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Diffusion of a passive impurity through a porous media:
fractal model in an unsaturated medium
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The theory of fractal sets is used to describe convective diffusion of a passive impurity in
a partly-saturated porous medium.
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Fluid flows through a porous medium have attracted much attention due to its im-
portance in several technological processes (e.g., filtration, catalysis, chromatography,
spread of hazardous waste, petroleum exploration, and recovery, etc. [1,2]). The study
of the diffusion of a passive impurity being transported by a liquid or gas in a porous
medium is one of the main approaches used to investigate flows in porous materials.
By a neutral indicator such as radioactive isotopes, one can obtain a large quantity of
information on the motion and mixing of the fluid. Besides isotopes, the neutral indica-
tor may be a pigment or even temperature if the investigator is interested in processes
involving convective heat transfer. Helium is often used as the indicator in the study of
transport processes in gases.

It is particularly interesting to study convective diffusion in a partly saturated
medium, since in this case one can obtain information not only on the flow itself, but
also on the geometric characteristics of the regions occupied by a single phase. It is
understood that diffusion becomes anomalous in an unsaturated medium and differs ap-
preciably from both normal molecular diffusion and convective diffusion in a completely
saturated porous medium, because the diffusion coefficient depends not only on the dy-
namic characteristics of the flow (as in the case of complete saturation) but also on the
geometric characteristics of the one-phase region.

It is assumed hereafter that we are studying the diffusion of a natural impurity in a
liquid while its gas (or another liquid) is being forced into a porous medium. Diffusion
in the gas will be ignored.

As is known [3], a displacement such as that being studied here can be formulated
in terms of percolation (flow) theory [4,5], and in this case the beginning of filtration of
the liquid through the gas-saturated sample is equivalent to the formation of an infinite
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liquid cluster permeating the sample. An infinite cluster exists at p > pc, where p is
displacement pressure and pc is breakthrough pressure (or percolation threshold). On the
contrary, the volume fraction of liquid (or saturation coefficient) c∞ near the percolation
threshold, i.e., at small �p = p − pc > 0, exhibits the following scale behaviour:
c∞ ∼ (�p/pc)

β and β ∼= 0.39 at d = 3, where β is a universal exponent dependent
on the dimension of the space d. Similar scaling behaviour is described by certain other
characteristics of the infinite cluster, such as the correlation length lc = l0(�p/pc)

−ν
and the permeability coefficient k ∼ ml20(�p/p)

t , where l0 is characteristic dimension
of a pore-space capillary and m is porosity. The universal exponents t and v in the three
dimensional space take the value t = 1.7, ν ∼= 0.9 [4–6].

It follows from above formulas that c∞ ∼ (lc/ l0)
−β/v. The geometric structure

of the liquid cluster near the percolation threshold is extremely complex and cannot be
adequately described by the methods of conventional Euclidean geometry. However, it
turns out that at distances l0 � l � lc, the structure of the cluster can be satisfactorily
expressed within the framework of the theory of fractals – sets of fractional dimension-
ality.

A set of F (enclosed in a Euclidean space of the dimension d) is called a fractal
if its fractal dimension df is not a whole number (in particular, does not coincide with d

or with the natural topological dimension F ) and if F satisfies the property of self-
similarity. Self-similarity means local invariance of F relative to a discrete half-group
dilatations. The fractal dimension is given by

df = lim
ε→0

lnN(ε)

ln(1/ε)
,

where N(ε) is the minimum number of d-dimensional cubes of the dimension ε covering
the set F : it is understood that F is compact. It is obvious that df � d. Along with
geometric (regular) fractals, frequent use is also made of stochastic fractals (nearly all
natural fractals are stochastic fractals). The properties of stochastic fractals are fully
analogous to the properties of geometric fractals if we interpret them only in terms of
their mean value. For example, in the formula for df, instead N(ε) we write 〈N(ε)〉 for a
stochastic fractal, where 〈•〉 denotes averaging over all possible realizations. Numerous
examples of fractal sets and the corresponding definitions can be found in [7,8].

A percolating cluster near the percolation threshold is a typical example of a sto-
chastic fractal. It can be shown that the fractal dimension of the cluster df = d − β/ν.
Thus, at d = 3, we have df = 2.56.

In this study the fractal model is employed to investigate real physical processes.
We observe followings:

(i) a fractal satisfying the property of self-similarity for all length scales is a math-
ematical object,

(ii) the use of fractal models to describe natural processes can be valid only with
certain limitations on the scale of the phenomena being investigated.
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In the subject being examined here, there are actually two length scales: the mi-
croscale from the characteristic dimension of a pore-space capillary l0 to the correla-
tion lc; the microscale characterizing the nonuniformity of the physical fields in the
problem such as the pressure field. The microscale is determined by the dimensions of
the sample and depends on external parameters in relation to the problem being consid-
ered, while the microscale depends on lc and thus, on �p. Here the fractal approach
is used only in microscale, i.e., for l0 < l < lc. All of the power laws governing self-
similarity without anomalous exponents are also valid only in this region. The problem
is averaged with the transition to the microscale, and fractal internal structure of the liq-
uid cluster disappears. In the microscale, all of the geometric parameters of the cluster
and the percolation processes are characterised by the normal dimension d = 3. Thus,
in regard to actual physical object such as the liquid cluster being examined here, the
asymptote in the direction of the fractal dimension df should be interpreted not as an
actual mathematical limit but only as a transition to the lengths ε ∼ l0, i.e., to the lower
boundary of the microscale.

Let us examine the case of steady-state filtration in a partly saturated porous
medium at pc < p,p ∼= pc. The mean rate of filtration is assumed to be constant within
the above-mentioned scales and to be low enough so that the flow has no effect on the
geometry of the liquid cluster. Besides, since the scales in question are appreciably
greater than the size of the capillary, it can be assumed as a first approximation that
Darcy’s law is valid for mean filtration velocity:

U = −k

u
q,

where k is permeability, u is viscosity, and q pressure gradient. Darcy’s law is usually
used to describe flow on the macroscopic scale, and it may not be satisfied for each
specific cluster at the microscopic level. However, in our case, we are dealing with the
average flow velocity for the cluster present. As a result, Darcy’s law can be used in this
case.

The structure of the cluster is fairly complex and, along with the channels compris-
ing its skeleton (and through which, of course, flow takes place), it contains a substantial
number of blind channels so-called dead ends through which liquid does not flow and
which participate only in normal molecular (not convective) diffusion. Calculations and
numerous experiments [4–6,9] demonstrate that the skeleton of the cluster near the per-
colation threshold can also be regarded as a fractal. Here, the probability of the cluster c1

being associated with the skeleton obeys the scaling law c1 ∼ (�p/pc)
β1 , where β1 > β.

In three dimensional space, β1
∼= 0.9. It follows from this fact that the fractal dimension

of the cluster is greater than the fractal dimension of the skeleton d1f = d− (β1/ν) < df,
while mean flow velocity U1 ∼ U/c1 is significantly greater than that which could be
expected if an evaluation was made only on the basis of the saturation coefficient.

Since the motion of a single impurity particle does not possess universality,
we are going to examine the relative motion of two impurity particles. We desig-
nate ri(t) as the position of the ith particle (i = 1, 2) at the moment of time t ,
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ξ(t) = r1(t)− r2(t) = ξ(0)+ ∫ t

0 V (τ)dτ , where V (t) is relative coordinate of particle
at the moment of time t . Since 〈V (t)〉 = 0, we have 〈ξ(t)〉 = 〈ξ(0)〉. This equality
means that

d

dt

〈
ξ(t)

〉 = 0,

but at the same time

ξ =
〈∣∣ξ(t)∣∣2〉1/2

,
d

dt

〈∣∣∣∣ d

dt
ξ(t)

∣∣∣∣
2
〉

may be nonvanishing. It is evident for these quantities that〈∣∣∣∣ d

dt
ξ(t)

∣∣∣∣
2
〉
= 〈V (t)V (t)

〉
, (1)

d

dt
ξ 2= 2

∫ t

0

〈
V (t)V (τ)

〉
dτ. (2)

The quantity (1) is easily calculated, since it is a simultaneous correlation function and
equal to the mean of the square of the difference in velocities at the points r1(t) and
r2(t) = r1(t)+ ξ(t). Thus〈

V (t)V (t)
〉 = 〈∣∣V (r1(t)

)− V
(
r1(t)+ ξ(t)

)∣∣2〉 ∼ U 2
c f0(Uc, ξ, lc, η),

where Uc is the mean velocity of the impurity particle; f0 = f0(Uc, ξ, lc, η) is a weight
factor associated with the fractal structure of the cluster: η is the kinematical viscosity.

In view of the self-similarity of the liquid cluster, the function f0 can be regarded
as relatively invariant with respect to the scale transformations x → αx, t → bt . This
leads to the following equation

f0

(
a

b
Uc, aξ, alc,

a2

b
η

)
= f0(Uc, ξ, lc, η).

Therefore, f0(Uc, ξ, lc, η) = f (Rec, ξ/ lc), where Rec = Uclc/η.
In the fractal region, f determines the probability that points separated by the

distance ξ(t) belong to the active flow region, i.e., to the liquid cluster.
For scales l0 � ξ � lc, we have

f (Rec, ξ/ lc) ∼ c∞
(ξ/ l0)

df−1

(ξ/ l0)
d−1
∼ c2
∞(ξ/ l0)

−δ,

where δ = d−df, while the coefficient in the above asymptote f may be depend on Rec.
Accordingly, in the regularity region ξ � lc, we have f (Rec, ξ/ lc) ∼ c2∞. The specific
form of the function f in the transitional region ξ ∼ lc is fairly complex and depends on
the geometric properties of the porous medium.

An impurity particle to come into the flow participates in two types of motion:
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(i) it is transported by the liquid over the skeleton of the cluster at the velocity U1,

(ii) having entered a dead end, the particle is slowed and moves only as a result of
molecular diffusion.

It leaves the blind channel after the characteristic drift time τ1 ∼ l2c/D1, where the dif-
fusion coefficient in a partly saturated medium D1

∼= D0(�p/pc)
t−β and D0 is that of

molecule [9]. The mean drift velocity U2 is evaluated by the quantity lc/τc
∼= D1/ lc,

where τ1 represents time of particle drift from the dead end, and τc correlation time.
Taking into account that the relative probability of the cluster being associated with the
skeleton is approximately c1/c∞, we have

Uc ∼ c1

c∞
U1 +

(
1− c1

c∞

)
U2 ∼ U

c∞
+ U2.

Since U2
∼= (�p/pc)

t+ν−β and U/c∞ ∼= (�p/pc)
t−β at small �p, Uc is assumed to be

U/c∞.
To calculate equation (2), we assume that

〈
V (t)V (τ)

〉 =〈V (t)V (t)
〉
g

(
t − τ

τc

)
,

where g is a correlation function, as well as that g(0) = 1 and that, with x going to
infinity, g(x) decreases more rapidly than any power of x. Here τc ∼ lc/Uc.

Equation (2) can be rewritten in the form

d

dt
ξ 2 ∼ U 2

c f (Re, ξ/ lc)τc

∫ t/τc

0
g(x) dx. (3)

In the case of ξ � lc and t � τc, the integral in equation (3) can be replaced by the
quantity g(0)t/τc. Thus

d

dt
ξ 2 ∼ 2U 2

c

(
ξ

lc

)−δ
tc2
∞.

Under the condition of ξ0 = ξ(0) we have

ξ 2+δ − ξ 2+δ
0 ∼ U 2

c l
δ
c t

2c2
∞.

Assuming that ξ � ξ0 ∼ 0, we obtain

d

dt
ξ 2 ∼ c2α

∞U 2α
c t2α−1lαδc , α = 2

2+ δ
� 1.

At t � τc, we find that f (Rec, ξ/ lc) ∼ c2∞. Thus, equation (3) takes the form

d

dt
ξ 2 ∼ 2U 2

c τcc
2
∞ ∼ 2Uλ, λ = c∞lc.



40 Y. Park / Diffusion of a passive impurity

Since the diffusion coefficient Dc ∼ (1/2)(d/dt)ξ 2, we find that in the fractal region
(ξ � lc)

Dc ∼ c−αδ∞ U 2αt2α−1λαδ, (4)

while outside this region (ξ � lc)

Dc ∼ Uλ. (5)

Equations (4,5) can have a somewhat different form. At
(
ξ � lc

)
, we have

Dc ∼
(
�p

p0

)α1

tv1 ,

where α1 = α(2t − β) ∼= 2.47, v1 = 2α − 1 ∼= 0.64, while at ξ � lc

Dc ∼
(
�p

pc

)α2

,

where α2 = t + β − v ∼= 1.19. Thus, we differentiate two diffusion regimes – an
anomalous region in the fractal and the normal convective region outside.

In summary, we used numerical values of the critical percolation indices obtained
for network models. Since percolation is important in a number of critical phenomena,
these indices have the property of universality, i.e., they are nearly independent of type
of network. However, they may also depend on its dimensionality. In the case of porous
materials with the pore space having the structure of a fractal, this may be significant.
Consequently, the numerical values of the above-cited indices α1 and v1 might change.
The index α2 corresponds to the diffusion coefficient outside fractal region and in this
case should be fairly universal. There has been considerably less study of percolation
theory on fractal sets than on regular network, so it is not yet possible to obtain suffi-
ciently reliable values of the critical percolation in relation to the dimensions of fractal
sets. We believe that the above estimates are definitely valid when the porous materials
have a sufficiently regular structure or a high porosity and the pore space is not fractal.
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